
DESIGN QA
MITIGATE DESIGN

ISSUES EFFICIENTLY

Contents
TABLE OF

01. What is Design Debt?

05. Why Good Design Matters

03. Design Debt Consequences

07. Reactive Design QA Approaches

02. Sources of Design Debt

06. Proactive Design QA Approaches

04.What is Design QA?

08. Final Thoughts08.

Design debt and why it
should be taken seriously

Many projects today have design debt, a rarely discussed downside of iterative and
incremental software development methods. As a term, design debt was based upon
the more popular concept called technical debt, a metaphor, coined by a renowned
American programmer Howard Cunningham. As a pioneer in both design patterns
and extreme programming, Cunningham encouraged companies to perceive cutting
corners in the course of development as getting yourself into financial debt. Like
taking a large loan that you will later have to repay at a considerable interest rate,
development short cuts and lack of proper verification procedures will inevitably lead
to extra rework, hindering the addition of new features and slowing your company’s
growth.

03

High-quality design brings simplicity to solving user problems

If technical debt is a result of rushed decisions and poorly written code that affect the
integrity of your codebase and make it unwieldy, design debt is the outcome of hasty
feature implementation and development compromises that damage the integrity of
user experience. All the thoughtful design concepts you chose for the product are
continuously ruined by the design verification procedures you skipped to save some
time. Minor flaws and deviations accumulate with every sprint and eventually turn
into an inconsistent, disjointed UI that delivers a disappointing experience. When that
happens, no matter how many more features your product has, the target audience
would still rather go with your competitor’s offer if it’s more aesthetically pleasing and
provides a better, more compelling user experience.

04

“Design debt is the outcome of hasty
feature implementation and

development compromises that damage
the integrity of user experience. Minor
flaws and deviations accumulate with

every sprint and eventually turn into an
inconsistent, disjointed UI that delivers a

disappointing experience.”

05

Where does design debt

come from?

While a faster time to market may be a tempting goal, it should never be achieved at
the cost of design quality. Otherwise, the usability and consistency of your design will
naturally start deteriorating. Without proper design verification and validation
procedures, every incremental change, every new element or feature introduced into
the design will slowly ruin the structural integrity of your product. Old features will
become stale and the whole thing will suddenly look like it had no design direction
whatsoever—a Frankenstein monster of disjointed elements looking as though they
were patched together without enough thought given to the long-term
consequences.

The cost of design fixes rises exponentially with every step of the SDLC

06

To make it more relatable, here are a few examples of the most common
causes of design debt:

1. Your team starts the project with assumptions. User goals and the problem you’re
trying to solve with your product are not properly researched or tested during the
planning and design stages. This leads to floating specifications, confusing
navigation, and poor user journeys.

2. The scope of the project is not properly defined, managed, or documented. Your
team is dealing with changing/growing requirements and tight deadlines at the
same time. This makes it extremely hard for them to work on every feature with
the same care.

3. There is no unifying plan directing the project. Designers have to conceptualize the
product following their personal viewpoints which leads to conflicting opinions,
inconsistencies, lack of cohesion in design, or misinterpreted product vision.

4. Chasing short-term goals at the expense of design hurts your product’s long-term
viability. The design gradually becomes stretched beyond its original intent
(elements are added without due consideration and feel forced into layouts).

5. The current state of your product’s UX/UI and the general design direction are
disregarded when designing a new feature (e.g. your team is too focused on
experimenting with the feature, trying to revolutionize it without paying attention
to whether it fits in well with the rest).

6. Due to the lack of resources, poor communication, or errors in specifications,
inexperienced designers are tasked with a job beyond their capabilities which
leads to poor design choices, undue complexity, and logical flaws.

7. You lack proper communication and workflows between designers, developers,
and QA: designers hand off a feature to devs but are not involved in its
implementation processes. This causes potential design deviations and flaws to be
left unnoticed or addressed at the last moment, causing delays, extra costs, and
rework.

07

When bad design can
cost you

When left unchecked, design debt can sometimes cause a lot more trouble than a
bad first impression, hurt user satisfaction, or loss of profit. And the problem is not
nearly limited to software development. Here’s one amusing real-life example for you.

Constructed by Uruguayan architect Rafael Viñoly in spring 2014, the commercial
skyscraper on 20 Fenchurch Street in London was nicknamed “The Walkie Talkie” for
its distinctive design. And while the building’s appearance is rather debatable, it’s not
the way it looks that made it so notorious back in the day.

The reason behind all the trouble the 38-floor skyscraper caused was its concave
design. The building was designed in a way to expand towards the higher floors,
which basically turned it into a huge curved mirror. During the building's
construction in summer 2013, this huge magnifying glass started reflecting
concentrated sunlight that was six times stronger than normal, effectively unleashing
a “death ray” of up to 243 °F (117 °C) onto the streets below. For about two hours each
day, the incredibly powerful beams were capable of effectively cooking everything in
their way. There were numerous reports of parked vehicles being horribly distorted
with paintwork completely melted off.

08

20 Fenchurch Street aka the “Walkie Talkie”

The Walkie Talkie building is a great example of complete disregard for design
verification and the consequences it can have for your business and reputation.
Following all the distress caused by the building’s faulty design, the City of London
Corporation has even started demanding independent assessment and verification
of property developers' design reports at the planning stage of the project. Royal
Town Planning Institute described the building as “a daily reminder never to let such
a planning disaster ever happen again.”

09

In July 2015, another issue revealed itself when Rafael Viñoly's skyscraper was accused
of creating a severe downdraught effect. Apparently, the very same concave design
had an unexpected impact on wind strength. When strong gusts of wind collided
with the curved facade of the Walkie Talkie head on, the wind got redirected
downwards at incredible speed and pressure. The downdraught was reported to have
blown people over and ripped signs off nearby buildings.

20 Fenchurch Street aka the “Walkie Talkie”

Shortly after the incident, the skyscraper was nicknamed “Walkie Scorchie” and
several parking bays in the area were temporarily closed as a precautionary measure.
In 2014, a series of vertical fins were installed on the higher floors of the tower as a
long-term solution to the scorching problem. Integrated to the outside of the
skyscraper’s windows, the fins could be angled to stop the beams from burning
through unsuspecting locals and their property. But even with one problem out of
the way, the terrible design choices behind the Walkie Talkie were not finished
terrorizing the city just yet.

Design QA and how it helps
in preventing design debt

After helping numerous businesses and software development companies around
the world deal with their quality assurance and software testing challenges, we
realized that design debt is a very common but rarely talked about problem. It is
something many projects that came to us seeking help didn’t take seriously before it
hit them hard—small design issues, ignored from iteration to iteration, accumulated
and suddenly creeped up on them. Here’s how it usually happens:

Preparing for the next sprint, the project manager realizes that there is something
wrong with the UI: the layouts look wonky; font sizes and colors are not what they
should be; alignments, animations, and micro-interactions are broken. The team
gathers a meeting. They take the build, compare it to the mockups and prototypes,
trying to figure what’s wrong. They see that the actual UI in development is way off
what it was originally designed to look and feel. The project manager is confused, the
stakeholders are pissed, the development team is demoralized, and the only question
on everyone’s mind is: “Where did it all go wrong?” The project ends up in a tight
corner where they either invest considerable resources to rework the whole thing, or
knowingly deploy a faulty design with a risk of being booed and refused by the
customers.

Many software development projects today find themselves in the same situation
asking the exact same thing. They wake up to an important lesson of just how
essential the design QA procedures are to avoiding being caught
between a rock and a hard place.

10

Example of low-quality implementation of the UI design, showing noticeable deviations from the expected output

What is design QA?

Maintaining consistency in design is one of the main responsibilities a designer
carries on a software development project. To produce software of desired quality, a
designer’s job should never end with handing off features to the development team
and moving on to designing the next. As your product is being developed, designers
need to actively observe its implementation and participate in the verification and
testing processes during every iteration. They should cross-check the UI in the build
against the handed-off designs. And in case they find any inconsistencies, they
should make sure the developers refactor the UI code, prioritizing the necessary
design fixes before deployment.

Design verification should be treated as an essential part of software development
workflows on par with other quality assurance procedures. If a company does not
incorporate design QA in the development and verification processes, pile after pile,
small design issues will infest the code until the project has no other choice but to do
a costly redesign, undermining all of the research and brainstorming conducted prior
to development.

“Design QA is a verification and validation process
designers conduct during every iteration to check if the
UI of the actual build has any inconsistencies or
deviations from the expected design output. In short,
this means making certain that the design didn’t get
messed up in the course of its implementation by
developers.”

11

Why good UX/UI
design matters

The main reason why most teams focus on sprint speed, prioritizing feature delivery
over visual integrity, is that they don’t understand the real value of design. Lots of
projects think that people won’t see the difference between a well-designed UI and
its poorly coded doppelganger. But they are wrong. Good UX/UI design can make a
huge difference between a successful product with great ROI and a failed, struggling
one. Companies like Amazon, Apple, Google, and Facebook invest a lot of time and
effort in refining their designs since every dollar invested in usability brings a return in
the range from 2 to 100 dollars.

This is best illustrated with a quote from Dr. Claire-Marie Karat, from the IBM Thomas
J. Watson Research Center.

And while it may be a tough challenge to fix all the inconsistencies during every
sprint, a proper proactive approach and timely reactive measures can help your team
effectively deal with design debt and improve the end value of your work.

She continues with an example:

Dr. Clare-Marie Karat, IBM Thomas J. Watson Research Center

“With its origins in human factors, usability engineering
has had considerable success improving productivity in IT
organizations.”

“A major computer company spent $20,700 on usability work to improve
the sign-on procedure in a system used by several thousand people. The
resulting productivity improvement saved the company $41,700 the first
day the system was used. On a system used by over 100,000 people, for
a usability outlay of $68,000, the same company recognized a benefit of
$6,800,000 within the first year of the system’s implementation. This is a
cost-benefit ratio of 1:100.”

12

Proactive solutions to
dealing with design debt

A typical workflow in iterative software development looks something like this:

Make design QA a part of your software
development workflow

1.

3.

2.

4.

5.

The team receives the requirements for a new feature.

Developers implement the feature and pass the ticket on to QA.

Designers create mockups/prototypes with design specifications and hand them
off to the devs.

QA conducts a round of code reviews and testing to verify the feature.

Developers fix some of the issues found and backlog the rest for the next sprint.

A typical workflow in iterative software development

13

The downside of such workflow is that the ticket is simply being relayed from one
team to the other. When the team is done with one task, they immediately move on
to the next. Thus, designers provide the mockups and specifications to the devs but
do not follow the implementation process. Then, the ticket goes straight from
development to testing without any verification from designers. In a cycle where
designers have no say during the development and QA processes, it is pretty hard to
guarantee consistency and integrity of design in a finished product. While a good QA
team will guarantee optimized code structure, your user interface may still get out of
place without your designers’ overwatch.

You can’t make a successful product when everyone on the team is only concerned
about their own piece of work. It’s by taking collective ownership over the project,
communicating and reviewing each other's work your team can be sure everyone is
on the same page, delivering the desired result. What you can do to avoid messy
design from happening is put design QA as a step on your task board. By doing so,
you make design QA a deliberate part of your software development workflow—
something your team cannot simply ignore and skip.

14

The high-quality design is simple and solves the user's problems

It may look like an additional level of testing—which it totally is—but it is also an
additional layer of protection of the integrity of your UX/UI design. By making design
QA a part of your workflow, you promote open and honest communication. The team
becomes aware of a design issue as soon as it arises and together work out the best
solution to it. Close collaboration and mutual support between designers and devs in
the course of development will ensure your design choices don’t lose their value after
the release.

Your design output does not deteriorate from iteration to iteration, effectively saving
you from the risks of costly redesign and reengineering. Thus, you can put these
resources to good use in marketing or the future extension of your product with new
features. This also means significantly less UI issues to deal with during the testing
phase, which speeds up the QA process.

15

16

If designers can be a part of the feature implementation process, why can’t
developers participate in design? By means of simple collaboration or actual pairing
when working on a feature, you can make the design and development processes
better aligned with each other.

Involving developers in the design process will give them a better understanding of
your design decisions, help them find better development approaches to perfectly
match your design intentions. Developers’ feedback in the process of brainstorming
and conceptualizing for a new feature, as well as during design reviews, can provide
valuable insights—help further refine the designs, work out solutions for the
smoothest, debtless implementation. Such collaboration creates transparency,
improves communication on the project, and helps avoid any potential
inconsistencies.

With tools like Figma, Zeplin, and InVision, your design and development teams can
bridge the gap between design and CCS by sharing precise data and timely feedback
on the same platform. Using these collaborative design tools, you can drastically
improve the quality of your design hand-off process. A design spec document
becomes much faster and easier to prepare since a huge chunk of these
specifications (alignment, padding, font sizes, etc.) is already accessible through a
convenient tool.

Access to both the design and the CSS attributes in a shared file saves a lot of time for
both designers and developers while constant communication improves your
workflows and overall team efficiency. It helps your team make better design
decisions and provides you with better development results.

Involve developers in the design process

The ability to assess the state of your design and decide what fixes must come in first
is the most important part of keeping your design debt in check. It shouldn’t take
your designers and developers a ton of time if they do it together. Right after or
during code review, they can go through the UI to see if there are any obvious design
bugs or inconsistencies. Since developers are quite often on a very tight deadline,
they will probably find a few here and there. Identifying them before testing will help
QA engineers pay closer attention to the affected areas of the codebase and make
related issues easier to find.

Instead of creating a feature in one sprint and fixing all the design issues in the next,
designers can help developers identify these issues on the spot and prioritize their
fixing in the order from the smallest to the most visible and impactful ones.

Measure design debt and set the
right priorities for fixes

17

Severity prot for UX debt prioritization

When prioritizing what needs to be fixed ASAP and what can be carried on to the
next sprint, consider two factors: user value of the affected area and the ease of
fixing. It’s all about urgency and importance. If the impact of the issue is high but it’s
pretty easy to patch up, fixing this issue right here right now should be your top
priority. In case the flaw has low impact on usability but requires a ton of work to fix, it
is better to backlog it in favor of fixing a more critical issue. The ability to effectively
balance in-between these extremes will help you minimize design debt and stick to
the expected output.

18

Designers’ collaboration and communication with engineers, product managers, and
QA as a part of the development workflow will help the team build a robust design
system with well-refined style guides and pattern libraries that support every
element in the product. Having a set of clear rules and convenient building blocks
decreases the likelihood of design debt. It makes it easy for your development team
to add new features avoiding design inconsistencies.

This will help your team keep focus on the entire project, help them avoid blindly
chasing the development of new features and stacking up design issues in the
backlog. Involved in the development and verification processes, a designer will
provide a constant stream of timely feedback during every sprint. If there are any
signs of UI decline, the designer will be the first to notice and immediately call for a
round of refactoring to create the most value for users.

Build and maintain a design system

19

REACTIVE MEASURES TO
ELIMINATING DESIGN DEBT

When your UI has already become somewhat inconsistent, the elements disjointed,
and the new features look like they were added out of the context of each other, it
may seem that redesigning the whole thing is your best and only option at this point.
But that’s not entirely true. Yes, a costly redesign may be the obvious last resort in
dealing with design debt. However, you should never jump to such conclusions
without considering your other options first.

You may have already heard about code refactoring. As a renowned software
developer Martin Fowler put it in his book, “Refactoring is the process of changing
a software system in such a way that it does not alter the external behavior of the
code yet improves its internal structure.” When you refactor, you are improving the
design of your codebase after it has been written. But if you can refactor the code to
improve its internal structure, why can’t you improve the internal consistency of your
UI by refactoring its design along the way?

UI refactoring

20

Same as your codebase, over time the UI design can also suffer flaws, experiments,
and modifications that will inevitably affect its integrity. But it doesn’t mean you have
to take radical steps like a complete redesign to pay the debt down. Instead, plan for
refactoring to save you the trouble.

With refactoring, you can take a corrupted UI and refine it into a well-designed,
enjoyable experience without altering the software’s essential functionality in the
process. The focus of design refactoring is to identify and remedy usability flaws and
visual inconsistencies—elements that look unaesthetic, lack cohesiveness, and can
cause user frustration. While keeping the user interface enjoyable and intuitive for
your users, refactoring will also help the team refine your design direction, making
future changes to the UI much easier to design and smoother to implement.

21

UI refactoring can be viewed as a large process conducted in a series of small
iterations, baby steps you take to gradually introduce changes that will restore the
planned look and feel of your UI without altering the essential functionality. Adjusting
font and button sizes, aligning elements, fixing modals, animations, and micro
interactions, balancing colors, rewording the texts, et cetera—bit by bit, your
designers and developers consolidate the design patterns and reorganize the
structure of the UI. Instead of a costly redesign, refactoring enables you to
continuously smooth out rough edges, identify and remedy visual and usability flaws
to keep your UI from taking on a substantial amount of unnecessary design debt.

Since refactoring is a complex transformation process that involves a lot of changes in
the code, every step you take needs to be verified. This makes testing an imperative
part of the refactoring process. You should treat refactoring as a maintenance project
where the last thing you want to do is mess up the functionality of your software with
a bunch of cosmetic fixes.

Therefore, every small iteration during refactoring must be followed by a scheduled
round of testing. And while more frequent testing may seem drawn out, in fact, it
makes the whole QA process a lot faster—smaller iterations mean a smaller set of
changes introduced to the code. The issues can be isolated and fixed on the spot,
which leaves you fewer errors to deal with in the final round of testing.

Successful UI refactoring is hardly possible without unit testing, a method used by
developers to find and fix defects in individual units of code to ensure they meet their
design objectives and behave as intended. In this case, a unit can be anything from a
small button or micro-interaction to a feature as a whole. Units are tested
independently to make sure every issue that may arise in the process is isolated and
doesn’t affect the rest of the UI. Without proper unit testing, you risk breaking the
functional components at one end of the UI when refactoring an element at the
other.

Unit testing provides the correct scope of testing to UI refactoring, making it an
iterative process of timely and frequent changes to small units of code. It brings
speed and stability to even large refactoring projects. Through many small steps, you
can gradually fix the look and behavior of every visual element, pushing your design
quality to where you want it to be.

And even though unit testing your UI can’t be automated, it’s better to facilitate
further unit testing of the code behind your UI with automated testing tools like
xUnit, Selenium, or Cucumber. This saves the dev team a lot of time with faster test
feedback, which is crucial in agile software development.

Unit testing

22

After rounds of unit testing and refactoring the UI, it is crucial to test the impacted
areas for possible regression. You want to make sure that the implemented changes
and bug fixes in the units of code did not unintentionally break the looks,
performance, and functionality of any other UI components. Your QA team takes the
test cases from the previous version of your software solution, checks the validity of
these tests, and works to improve their quality before re-running them against the
new, refactored version.

A great way to approach regression testing is to maintain a proper version
management system with clearly defined use cases. This enables your team to
determine and create an appropriate subset of both positive and negative test cases
to cover a use case. They can easily see which parts of the code affected by the
refactoring belong to which use cases and test against these user flows to make sure
no issues are left undetected.

Regression testing

23

After your team has generated a comprehensive suite of regression tests, you can
automate the testing process by means of tools such as Git, Jenkins, and Bamboo.
When set up, your team can use such testing systems to automatically re-run the
tests, making defects easier to fix as they are identified faster. Such automated tests
can mimic the behavior of real users and simulate their interactions with the UI. The
program loops through user inputs in the user flow to verify that all the visual
elements and interactions are in place and work well together after the changes.
Regression testing automation can free up a significant part of your QA team to focus
on other important tasks.

24

Final thoughts

Iterative development and experiment-driven design approaches are undisputed
champions of creating software that truly shines. After all, great products don’t come
from simply meeting business requirements and acceptance criteria. They come
from getting to the core of user perception, needs, and wants and facing them with a
simple, understanding, and kind user interface. However, it is important to not get too
carried away in the process. Otherwise, you risk taking on a considerable design debt
that you will inevitably have to pay through either UI refactoring or a complete
redesign.

It’s a common problem among today’s software development companies since they
put design verification at the very bottom of the to-do list. After designers finish
prototyping and user testing the feature, they just hand it off to developers and move
on to designing the next one. When built, the feature undergoes several rounds of QA
and fixes where only after every functionality-related issue has been dealt with,
designers get to verify if everything looks good on their part. This means the potential
UX/UI deviations are addressed in the last place. Thus, fixing them costs a lot more of
your time and budget than if a designer was involved in the QA process from start to
finish—reviewing the implemented changes during every sprint to see if they had
any negative effect on the design.

Companies need to understand the gargantuan value of having a high-quality UI and
what it can bring to their business. Sure, making design QA a part of your workflow
could be a pretty challenging endeavor at first. But do it the right way and you will
succeed in both effectively avoiding accumulating design debt and reaping great
rewards in the long run.

25

ABOUT US ABOUT Author

As a software outsourcing company
with 20 years of experience in
delivering complex, custom solutions,
we’ve built strong expertise in reliable
architecture, efficient development
practices, and transparent
communication with clients.

business@qarea.com
www.qarea.com

Andrew is an insatiably curious geek
who loves writing about technological
innovation, business development, and
digital transformation in the globalized
world. Throughout more than 5 years of
experience as a writer for different
media, startups, and tech companies,
Andrew has meticulously studied every
aspect of the tech industry and loves
sharing his knowledge with the
international community.

Andrew M.
Technical Writer at QArea

